
Visual Basic Lecture Notes 3

When we studied Maple, we often wrote procedures that could be called upon to

perform a function and return a value to the program. In this section, we will study how to
create procedures in VB.

Recall from your algebra class the terms permutation and combination. The number of
permutations of n objects taken r at a time (often denoted nPr) is given by n!/(n-r)!. This result
is used when the order of the objects is not important. The number of combinations of n
objects taken r at a time (denoted by nCr) is given by n!/[r!(n-r)!].

In our last section of notes, we created a program that calculated the factorial of a
number. We can call upon it to help us out now. Create a new project in VB called
Permutations and Combinations.

Change the name of the Form to Permutations and Combinations. You may need to
expand the size of the form in order to see the whole name.

Let’s incorporate the use of Tabbed windows. From the Toolbox, in the section called
Containers, select Tab Control. Place it on the form and resize it to fill the entire form. On
the first tab page, re-create the factorial program from Lecture 2 Homework. Name that tab
page Factorial. This page should include a text box to receive user input, labels to output the
solution to and display the appropriate text, a Calculate button, and a close button Make the
second tab page look like the following:

Change its name the Permutation and Combinations, and add the appropriate labels,
textboxes, and buttons. Make sure to add an extra label after the one whose text is “Answer:”
so we have a place to output our result to.

Whether we simply want to calculate the factorial of a number or calculate
permutations or combination, we will need the code for computing factorials. This time, let’s
create a procedure that we will reference for each of the buttons. In VB, a procedure that
returns a value to the caller is called a Function. Go to the Code View and enter all of the
following code:

Function Factorial(ByVal x As Integer)
 Dim i, fac As Integer
Try
 fac = Convert.ToInt32(x)
 If n = 0 Then
 Return 1
 Else
 For i = x - 1 To 1 Step -1
 fac *= i
 Next
 End If
Catch formatexceptionparameter As FormatException
MessageBox.Show("You must enter an integer", "Invalid Number Format", _
MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try
Return fac
End Function

Here we have said that Factorial is a function (procedure) that receives the variable x

which is an integer, and uses the loop to calculate the factorial. Notice that we did not have to
declare the variables i and fac to be local as we did in Maple. Since we are using a function, all
variables created within the function are automatically local to the procedure.

The lines Try and Catch are used to handle exceptions. Exceptions are events that can
crash the program. For instance, since we are trying to retrieve an integer number from the
user, we use the line fac=Convert.ToInt32(x) to take the number x that the procedure receives
and convert it to type Integer 32-bit. If the number is not already an integer, this conversion
would cause the program to crash, which is where the Catch line comes in. This particular
type of exception is called a Format Exception, because the variable is not in the correct format
for the conversion. With this code, the Catch will stop the Format Exception Error from
crashing the program and display a Message Box telling the user to enter an integer.

The Factorial function is the only computational code that we will really require. Now
we only need to add functionality to the rest of the buttons. Consider the button that is labeled
Calculate nPr. Clicking on this button should cause the computer to retrieve the values of n
and r from the text boxes, send the appropriate numbers to the Factorial function, and output
the result to the label. Remember that by definition, nPr = n!/(n-r)!. The code to accomplish
this goes like this:

Private Sub cmdnpr_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdnpr.Click
 Dim solution As Integer
 n = txtn.Text
 r = txtr.Text
 solution = (Factorial(n) / Factorial(n - r))
 lblsolution2.Text = solution
End Sub

Note that I changed the name of the button to cmdnpr. It is a good programming
technique to name the objects according to what they do. I also changed the name of the text
boxes to txtn and txtr, and the label for the solution to lblsolution2. The complete body of
code for the program should look like this:

Imports System.Windows.Forms.Form
Public Class frmPermandComp
 Dim n, r As Integer
 Private Sub cmdfactorial_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles cmdfactorial.Click
 n = txtbx1.Text 'retrieve number for computing factorial
 lblsolution1.Text = Factorial(n) 'call the factorial function
 End Sub

 Private Sub cmdnpr_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles cmdnpr.Click
 Dim solution As Integer
 n = txtn.Text 'retrieve n
 r = txtr.Text 'retrieve r
 solution = (Factorial(n) / Factorial(n - r)) 'calculate nPr
 lblsolution2.Text = solution 'display solution
 End Sub

 Private Sub cmdncr_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles cmdncr.Click
 Dim solution As Integer
 n = txtn.Text 'retrieve n
 r = txtr.Text 'retrieve r
 solution = Factorial(n) / (Factorial(r) * Factorial(n - r)) 'calculate nCr
 lblsolution2.Text = solution 'display solution
 End Sub

 Function Factorial(ByVal x As Integer) 'procedure to calculate factorials
 Dim fac,i As Integer 'variables to manipulate the solution
 Try 'handle exceptions
 fac = Convert.ToInt32(x) 'convert type to catch exceptions
 If fac = 0 Or fac = 1 Then 'handle 0! and 1!
 Return 1 'send 1 in these cases
 Else every other case

 For i from fac-1 to 1 Step -1 'count down to 1
 fac*=i 'multiply the factorial
 Next

 End If
 Catch formatexceptionparameter As FormatException 'message box if Format

Exception occurs
 MessageBox.Show("You must enter an integer", "Invalid Number Format", _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
 Return fac
 End Function

 Private Sub cmdclose1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles cmdclose1.Click
 Me.Close() 'close the program from the Factorial tab
 End Sub

 Private Sub cmdclose2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles cmdclose2.Click

 Me.Close() 'close the program from the second tab
 End Sub
End Class

Now, let’s consider a slightly different way of writing a factorial program. Our

previous method involved the use of a loop to multiply the number by every number less than
it. Let’s consider another method that involves a recursive procedure. A recursive procedure
is one which calls itself. Consider this property of factorials: n! = n * (n-1)! For example:

5! = 5*4*3*2*1
 = 5*4!

because 4! = 4*3*2*1. We can define the factorial function to call itself in this manner.

We define 0! and 1! to equal 1. Any other number we send it will return n*(n-1)! Here’s how
to do this:

Function Factorial(ByVal x As Integer) 'procedure to calculate factorials
 Dim fac As Integer 'variable to manipulate as the solution
 Try 'handle exceptions
 fac = Convert.ToInt32(x) 'convert type to catch exceptions
 If fac = 0 Or fac = 1 Then 'handle 0! and 1!
 Return 1 'send 1 in these cases
 End If
 Catch formatexceptionparameter As FormatException 'message box if Format

Exception occurs
 MessageBox.Show("You must enter an integer", "Invalid Number Format", _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
 Return fac * Factorial(fac - 1) 'recall the factorial function
 End Function

Now the factorial function will continually call itself until it reaches 1, then compute
the product. You may wonder if this method is more efficient that using the loop structure. It
does, in fact, run more quickly than a For…Loop structure. Even though to us it seems that
the two are identical, they are very different in terms of how the computer does the
computations.

Homework: The Fibonacci sequence is defined by the following recursive algorithm:
Fn = Fn-1 + Fn-2, where F0=1 and F1 =1. This gives the sequence 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, 233, 377, …
Write a program that takes the number n and returns the nth Fibonacci number. Use a

recursive procedure to do this. If you want to be extremely creative, try to output all of the
Fibonacci numbers up to the number n.

